「哎呀,别卖关子了,赶紧说吧!」
看着老爹一幅悠然闲适的样子我牙根儿都痒痒,如果不是害怕遭雷劈可能早就用鞋底招呼过去了。
「好吧好吧,那我就说吧。其实要通过键值来避过switch目前我能够想到的有两种方法,其中一种比较取巧,另一种就是正儿经的通过计算得出来。
刚刚你们也说了,如果是对灰太狼进行上下移动,实质上是在对行数x进行加减,左右移动,是对列数y做加减,那我们定义一个二维数组,把要加减的量放在数组里面,然后通过键值把数组取出来就好了。
向上移动,x1,也就是x+(1),y+0;
向下移动,x+1,y+0;
向左移动,x+0,y1,也就是y+(1);
向右移动,x+0,y+1;
键值的排列是左37,上3,右39,下40,如果我们对它们进行减运算,得到的结果是左0,上1,右2,下3,正好可以作为数组的下标。
于是就可以声明一个偏移量数组:
int oset[4][2]={{0,1},{1,0},{0,1},{1,0}};
我们知道了灰太狼当前的位置,也可以通过键值获取位置的改变量,那么下一个位置、下下个位置自然就能够确定了。假设我们把移动这部分的逻辑定义成一个move函数,那么实现逻辑大概如下:
int move(int keyCode)
{
int index = keyCode 37;
int x1 =灰太狼当前位置x+ oset[index][0];
int y1 =灰太狼当前位置y+ oset[index][1];
int x2 =灰太狼当前位置x+ oset[index][0]* 2;
int y2 =灰太狼当前位置y+ oset[index][1]* 2;
//移动判断逻辑
}
x1,y1和x2,y2就是当前移动方向的下个位置,下下个位置的坐标,有了它们,实现功能应该就不是什么难事儿了吧?」
「这样……都行?」
我和小弦子都被老爹这波操作秀到了,真的特别让人无语。就好像你想尽一切办法,使尽浑身解数都没有将一块大石头给搬起来,然而在这个时候某个人拿了几个滑轮和绳子,不费吹灰之力就大石头给搬起来了。
不仅是我和小弦子有这种感觉,就连之前陷入沉思的六叔叔也是好一阵无语,如果一定要用一个词语来形容我们此时此刻的心情,大概还是只有「卧槽」这两个字了。
但不得不是说的是,老爹的这种做法让人挑不出来任何的毛病来,而且简单易懂,实现起来也极为容易。
很显然,这并不是我,小弦子和六叔叔想要看到的结果,因为这和我们想象中的算法相差太大了!
算法难道不应该是经过一系列精密的计算后,最终得到想要的结果么?
「哈哈,你们别这样看着我,我之前声明过的,这种方法比较取巧。而且作为一个合格的程序员,就是要用最简洁的代码实现最复杂的功能,因为简洁同时也意味着效率高。」